
Writing High Performance AI 
Agents in Python: Insights from 
building Modulo

https://gamma.app/?utm_source=made-with-gamma


whois
Software Engineer and Team Lead with over 13 years of experience 
building performant and scalable distributed systems at Google, 
VMware, Arista Networks and SAP

M.S. in CS from Dartmouth College

BIT Mesra alumni

Founder and CEO of Modulo

https://moduloware.ai/
https://gamma.app/?utm_source=made-with-gamma


What is Modulo?
The design and development of Modulo was inspired by a number of problems that are as yet unsolved!

"Analyzing Bug Reports is time consuming"
Parse through logs and artifacts

Read through 30+ comments
Only to find the bug is not actionable due to log 
rollover, or is not reproducible.

"Monitoring tools produce too many 
spurious alerts"

Should I be worried about this alert?
Did a recent change cause this issue?

"LLMs can solve all the problems"
But its hard to validate LLM generated bug fixes.
An average bug report with over 1 billion tokens 
is too much for frontier models.

https://gamma.app/?utm_source=made-with-gamma


Challenges with fixing bugs using frontier AI
Over reliance on LLMs is a problem

LLM calls are slow! And every tool that uses them becomes slow.
A lot of existing solutions such as mutation testing are ignored and under 
valued.

Existing tools focus on converging on ONE correct fix for a problem (high precision).

If that solution doesn't work developers have to effectively guide the tool to try a 
specific approach until something works.

After a few iterations, context summarization etc, do developers even know 
what context the LLM is working with?

https://gamma.app/?utm_source=made-with-gamma


How is Modulo different?

Handles Large Data

Real-Time 
Monitoring

Data Pipeline

Multi-Agent 
Reproduction

Automated 
Fixes & 

Validation

https://gamma.app/?utm_source=made-with-gamma


Modulo MVP Demo
Modulo Web App [Link]

01:27

YouTube

Fix your Github Issues with Ado
Ado is a multi agent bug fixer and issue
analysis engine for Github repositorie&

Modulo Github App [Preview]

https://www.youtube.com/watch?v=w-P89nan9dM
https://moduloware.ai/
https://gamma.app/?utm_source=made-with-gamma


Building LLM applications for speed
In this talk we will explore design patterns for building  LLM-based applications that have

1

Higher token throughput and 
low time to first token

2

Optimal system architectures 
for high QPS

3

& all without sacrificing 
response accuracy.

https://gamma.app/?utm_source=made-with-gamma


Why Performance Matters
Building high-performance LLM applications requires strategic thinking. This talk shares practical strategies from developing 
a coding agent that fixes bugs.

User Experience
Fast responses keep users engaged 
and satisfied

Cost Efficiency
Optimized systems reduce 
operational expenses

Scalability
Performance enables growth 
without bottlenecks

https://gamma.app/?utm_source=made-with-gamma


Not Covered in this Talk

Strategies for improving accuracy and correctness Multi-agent co-operation and orchestration

& These are all separate talks in themselves &

https://gamma.app/?utm_source=made-with-gamma


Design Patterns for Higher Token Throughput
When users request services4image generation, internet searches, or alerting agents4developers must consider critical 
factors:

Input Analysis
How many documents need processing? What's the 
total token count?

Output Requirements
How many output tokens must be delivered to the 
user?

Work Breakdown
Can the work be broken into stages for better 
efficiency?

Response Time
Does the user expect an instant response or can 
processing be asynchronous?

https://gamma.app/?utm_source=made-with-gamma


Classical Patterns Apply
When you spot multiple input documents, staged processing, and 
chunking possibilities, proven distributed system patterns become 
relevant:

Scatter Gather
Hadoop-style parallel processing

Pipelining
Microservices working independently

High Parallelism
Maximize concurrent operations

But before you dive into implementation, always start with the  math 
behind working with LLMs.

https://gamma.app/?utm_source=made-with-gamma


Reasoning about user performance expectations

Start with setting realistic expectations before building any feature. For a given function, how soon will an impatient user 
expect a response?

Chat Mode

Quick responses for simple queries (Time to First Token is 
key)

Deep Research Mode

Extended processing for complex tasks (Token 
Throughput is key)

An Example:

1

Initial Research
30 seconds upfront to gather 

sources and create a plan

2

Section Generation
10 seconds per section to process 

tokens and generate output for 
each section independently

3

Final Assembly
Combine all independent sections 

and reword into a cohesive 
narrative.

https://gamma.app/?utm_source=made-with-gamma


Real-World Example - Find relevant files for a bug

While building Modulo, the single biggest bottleneck was the LLM API. For 50 files, a naive approach sends one gigantic 
prompt and waits for tens of thousands of output tokens. 

At 50 output tokens/sec, 30,000 tokens takes 600+ seconds (10 minutes).

What we did: 

Each file is decomposed into one or more chunks.
LLM call for each chunk is done in a separate thread.

Using 16 parallel LLM calls on a standard VM with 16 vCPUs gives us:

 16 × 50 = 800 output tokens/sec which means the time is reduced to 40 seconds (from 10 minutes)!!

This pattern works particularly well for "find a needle in a haystack" type of problems - such as root causing and 
generating fixes for bugs.

https://gamma.app/?utm_source=made-with-gamma


Demo - maximizing throughput with chunking

01:52

YouTube

Pydelhi Talk - Maximize through&
Execution time Parallel calls - 11.324
sec Sequential calls - 90.624s Token&

Execution time
Parallel calls - 11.324 sec
Sequential calls - 90.624s

Token throughput
Parallel calls - 6035 tokens/s

Sequential calls - 751 tokens/s

Code for this demo is here

https://www.youtube.com/watch?v=VP50de9lrKs
https://github.com/kirtivr/pydelhi-talk/blob/main/throughput_parallel_vs_sequential.py
https://gamma.app/?utm_source=made-with-gamma


Demo - improving time to first token

02:54

YouTube
Pydelhi Talk Demo - Effect of LL&
Key to improving TTFT: Request
streamed responses - tokens are&

Key to improving TTFT:
Request streamed responses - tokens are returned by 
the LLM as soon as they are generated, in multiple 
responses which need to be assembled together.
Request prefix caching to be enabled.

TTFT = 2.4s with streaming v/s 13 seconds without 
streaming.

Note that the throughput may get worse, as it happened 
in our case.

No streaming - throughput 486 tok/s
streaming - throughput 244 tok/s

Code for this demo is here

https://www.youtube.com/watch?v=UdPTpQsmYjc
https://github.com/kirtivr/pydelhi-talk/blob/main/ttft_prefix_caching_1.py
https://gamma.app/?utm_source=made-with-gamma


Wait but Why?- A Case Study [TTFT]

Time to first token is directly proportional to the number of input tokens.

First output token is generated immediately after the prefill phase. The algorithm to generate subsequent output tokens is 
separate and is referred to as "decode phase".

Based on benchmarks it was found that for Llama-3.1-70b each input token adds 0.05ms to the time to first token.

For 20,000 input tokens, one LLM call would mean - 0.05 × 100 × 200 = 1000 ms = 1s.

Credit for image: https://dzone.com/articles/ninety-cost-reduction-prefix-caching-llms1

https://docs.nvidia.com/nim/benchmarking/llm/latest/performance.html
https://dzone.com/articles/ninety-cost-reduction-prefix-caching-llms
https://gamma.app/?utm_source=made-with-gamma


Wait but Why?  [Throughput]

To measure the impact of number of output tokens, we have to see the metric "inter-token latency" or "time per output 
token".

This metric only counts the latency between each token in the decode phase, which means it does not depend on the 
number of input tokens. 

For Llama-3.1-70b, with 2000 output tokens, ITL was measured by NVIDIA at 30ms.

This means generating each output token takes 30ms. 

Generating 2000 output tokens would mean - 2000 × 30 ms = 60 seconds, or 1 minute.

https://docs.nvidia.com/nim/benchmarking/llm/latest/performance.html
https://gamma.app/?utm_source=made-with-gamma


Output tokens > Input tokens

Total time taken = ~30ms  *  (Number of Output 
tokens) + 0.05ms  * (Number of Input Tokens)

Performance impact of the number of output tokens 
overshadows the number of input tokens.

https://gamma.app/?utm_source=made-with-gamma


Do performance wins from concurrency last forever?
Unfortunately, no. As this graph based on data from NVIDIA shows, as concurrency increases, throughput gains plateau.

https://docs.nvidia.com/nim/benchmarking/llm/latest/performance.html
https://gamma.app/?utm_source=made-with-gamma


Do performance wins from concurrency last forever?
While throughput plateaus out, time to first token gets significantly worse.

The reason for this is 
that the prefill phase 
of token generation is 
typically compute 
bound.

High concurrency 
means higher 
contention on the 
compute resources of 
the GPU.

On the other hand the 
decode phase is 
typically memory 
bandwidth bound. 
Extra compute is 
available, and 
throughput benefits 
from it.

https://gamma.app/?utm_source=made-with-gamma


Know your LLM model's output tokens/sec

https://gamma.app/?utm_source=made-with-gamma


Jump Through Stages with Microservices
Transitioning to microservices boosts performance via parallelism and asynchronous processing.

Python Asyncio
Async handling for LLM API calls, 
preventing blocks

Parallel Execution
Concurrent file/network ops, 
reducing I/O wait

Event Queue Architecture
RabbitMQ enables independent 
worker processing

Benefits

6× faster bug fixes
Concurrent job processing
Decoupled producers and consumers

Drawbacks

Higher complexity
Increased monitoring
Django async ORM limitations

https://gamma.app/?utm_source=made-with-gamma


Modulo's bug processing pipeline allows stages to 
operate independently for incoming bugs.

Analysis Parse and compress 
bug report and 
artifacts

Reproduce Bug Reproduce bug and 
write test case

Root Cause Identify root cause

Fix Generate fix

Validate Validate fix with 
reproduction

https://gamma.app/?utm_source=made-with-gamma


Context Management with Mem0

02:14

YouTube

PyDelhi Talk Demo - Context Ma&
This demo shows the token efficiency
gains from using Mem0. Code for this&

Mem0 processes a prompt to extract relevant facts from 
previous conversation history.
Its internal architecture combines a vector database (for 
memory embeddings) and a graph database.
Similar to RAG, Mem0 fetches only pertinent facts from 
a knowledge base.
In the demo we show how token throughput improves 
from 60.51 tok/s to 216.06 tok/s in the full context v/s 
Mem0 case.

https://www.youtube.com/watch?v=VQOjQ-AkCB4
https://gamma.app/?utm_source=made-with-gamma


1
Know Your Workload
Understand dependencies, parallelization, and atomicity requirements.

2
Tokens are the key
Reduce token usage for lower cost and better performance; use cost-effective models for non-
critical tasks.

3
Embrace Parallelism
Leverage parallel processing for LLM applications.

4
Use Flexible Architectures
Microservices offer independent scaling, fault isolation, and pipelining.

5
Expect Failures
Implement retries universally to handle unpredictable 
behavior.

https://gamma.app/?utm_source=made-with-gamma


https://gamma.app/?utm_source=made-with-gamma

