Writing High Performance Al
Agents in Python: Insights from
building Modulo

Modulo Al

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

whois

Software Engineer and Team Lead with over 13 years of experience
building performant and scalable distributed systems at Google,
VMware, Arista Networks and SAP

M.S. in CS from Dartmouth College
BIT Mesra alumni

Founder and CEO of Modulo

g Madewith Gnnn

Fus 4

https://moduloware.ai/
https://gamma.app/?utm_source=made-with-gamma

What is Modulo?

The design and development of Modulo was inspired by a number of problems that are as yet unsolved!

"Analyzing Bug Reports is time consuming”
Parse through logs and artifacts

Read through 30+ comments

Only to find the bug is not actionable due to log "Monitoring tools produce too many
rollover, or is not reproducible. spurious alerts”

e Should I be worried about this alert?
* Did arecent change cause this issue?

"LLMs can solve all the problems”
But its hard to validate LLM generated bug fixes.

An average bug report with over 1 billion tokens
Is too much for frontier models.

(Made with GRMIMA)

https://gamma.app/?utm_source=made-with-gamma

Challenges with fixing bugs using frontier Al

® Overreliance on LLMs is a problem
© LLM calls are slow! And every tool that uses them becomes slow.

o Alot of existing solutions such as mutation testing are ignored and under
valued.

® Existing tools focus on converging on ONE correct fix for a problem (high precision).

e If that solution doesn't work developers have to effectively guide the tool to try a

specific approach until something works.

o After a few iterations, context summarization etc, do developers even know
what context the LLM is working with?

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

How is Modulo different?

Automated
Fixes &
Validation

Handles Large Data

Real-Time
Monitoring

Multi-Agent
Reproduction

Data Pipeline

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Modulo MVP Demo

Modulo Web App [Link] Modulo Github App [Preview]

is should trigger a wel
@ YouTube &
FiX your Github |SSUGS With AdO (Kirtivr 17 hours ago
Ado is a multi agent bug fixer and issue *modulo ts magic real?

analysis engine for Github repositorie...

al-mo-du-lo-test-gh-app (bot) 42 minutes ago - with ai-mo-du-lo-test-gh-app

€ Al Bug Analysis Complete

@ summary

The issue appears to be related to a webhook event not being triggered as expected, with repeated comments from the
same user indicating persistent problems.

© Issue Classification

o Type: bug
« Severity: medium
« Priority: medium

@ Confidence Score: 70%

@D Files Identified for Modification

 bugngmt_daemon/ado_gh_bot/src/main.py

* 'bugmgmt_daemon/ado_gh_bot/src/webhooks/github_events.py
® ' bugngmt_daemon/ado_gh_bot/src/webhooks/issue_handler .py
* (bugmgmt_daemon/ado_gh_bot/src/webhooks/conversation,py
® bugmgmt_daemon/ado_gh_bot/src/webhooks/pr_automation, Py
.

bugmgmt_daemon/interface/dockerized_website/modulo/core/ github webhook handlers

Made with GRMIMA

https://www.youtube.com/watch?v=w-P89nan9dM
https://moduloware.ai/
https://gamma.app/?utm_source=made-with-gamma

Building LLM applications for speed

In this talk we will explore design patterns for building LLM-based applications that have

] 2 3
Higher token throughput and Optimal system architectures .. all without sacrificing
low time to first token for high QPS response accuracy.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Why Performance Matters

Building high-performance LLM applications requires strategic thinking. This talk shares practical strategies from developing
a coding agent that fixes bugs.

User Experience Cost Efficiency Scalability
Fast responses keep users engaged Optimized systems reduce Performance enables growth
and satisfied operational expenses without bottlenecks

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Not Covered in this Talk

o &5
Vv)
Strategies for improving accuracy and correctness Multi-agent co-operation and orchestration

... These are all separate talks in themselves ...

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Design Patterns for Higher Token Throughput

When users request services—image generation, internet searches, or alerting agents—developers must consider critical

factors:

3 Input Analysis > Output Requirements
How many documents need processing? What's the How many output tokens must be delivered to the
total token count? user?

Work Breakdown X Response Time
Can the work be broken into stages for better Does the user expect an instant response or can
efficiency? processing be asynchronous?

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Classical Patterns Apply

When you spot multiple input documents, staged processing, and
chunking possibilities, proven distributed system patterns become
relevant:

Scatter Gather

Hadoop-style parallel processing

Pipelining

Lf:” Microservices working independently

High Parallelism

Maximize concurrent operations

But before you dive into implementation, always start with the math
behind working with LLMs.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Reasoning about user performance expectations

Start with setting realistic expectations before building any feature. For a given function, how soon will an impatient user

expect a response?

Chat Mode

Quick responses for simple queries (Time to First Token is

key)

An Example:

Initial Research

30 seconds upfront to gather
sources and create a plan

Deep Research Mode

Section Generation

10 seconds per section to process
tokens and generate output for
each section independently

Extended processing for complex tasks (Token
Throughput is key)

Final Assembly

Combine all independent sections
and reword into a cohesive
narrative.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Real-World Example - Find relevant files for a bug

While building Modulo, the single biggest bottleneck was the LLM API. For 50 files, a naive approach sends one gigantic
prompt and waits for tens of thousands of output tokens.

At 50 output tokens/sec, 30,000 tokens takes 600+ seconds (10 minutes).
What we did:

e Each file is decomposed into one or more chunks.

® LLM call for each chunk is done in a separate thread.

Using 16 parallel LLM calls on a standard VM with 16 vCPUs gives us:

16 x 50 = 800 output tokens/sec which means the time is reduced to 40 seconds (from 10 minutes)!!

This pattern works particularly well for "find a needle in a haystack" type of problems - such as root causing and

Made with GRMIMA

generating fixes for bugs.

https://gamma.app/?utm_source=made-with-gamma

Demo - maximizing throughput with chunking

® Execution time
uYouTube

N

o Parallel calls - 11.324 sec
Pydelhi Talk - Maximize through...

o) I -
Execution time Parallel calls - 11.324 Sequentlal calls - 90.624s

sec Sequential calls - 90.624s Token...

* Token throughput
o Parallel calls - 6035 tokens/s

o Sequential calls - 751 tokens/s

Code for this demo is here

Made with GRMIMA

https://www.youtube.com/watch?v=VP50de9lrKs
https://github.com/kirtivr/pydelhi-talk/blob/main/throughput_parallel_vs_sequential.py
https://gamma.app/?utm_source=made-with-gamma

Demo - improving time to first token

* Keytoimproving TTFT:

N

o © Request streamed responses - tokens are returned by
Pydelhi Talk Demo - Effect of LL... . .
the LLM as soon as they are generated, in multiple
responses which need to be assembled together.

o Request prefix caching to be enabled.

®* TTFT =2.4s with streaming v/s 13 seconds without
streaming.

* Note that the throughput may get worse, as it happened
In our case.

© No streaming - throughput 486 tok/s
© streaming - throughput 244 tok/s

Code for this demo is here

Made with GRMIMA

https://www.youtube.com/watch?v=UdPTpQsmYjc
https://github.com/kirtivr/pydelhi-talk/blob/main/ttft_prefix_caching_1.py
https://gamma.app/?utm_source=made-with-gamma

Wait but Why?- A Case Study [TTFT]

fl“ ompt/P ffﬁll Phﬂsi) Decode phase,(Token generation) .

I A
| LLM . LLM | LLM | LILM
I iteration 1 : iteration 2 : iteration 3 : iteration 4
S S S S R S R S B S
| _

Is apple a fruit? -+ Is apple a fruit? : Yes | it | is EOS
, I | |
lfecrencacrcnncncnansnassanscsnes sssssssansssssssssssPpafessncssnssnansenses P R ——.
| Time-Per- | Time-Per- |

PR |
| Time-To-First-Token | Output-Token : Output-Token

Time to first token is directly proportional to the number of input tokens.

First output token is generated immediately after the prefill phase. The algorithm to generate subsequent output tokens is
separate and is referred to as "decode phase".

Based on benchmarks it was found that for Llama-3.1-70b each input token adds 0.05ms to the time to first token.

For 20,000 input tokens, one LLM call would mean - 0.05 x 100 x 200 = 1000 ms = 1s.

Credit for image: https://dzone.com/articles/ninety-cost-reduction-prefix-caching-llms*

Made with GRMIMA

https://docs.nvidia.com/nim/benchmarking/llm/latest/performance.html
https://dzone.com/articles/ninety-cost-reduction-prefix-caching-llms
https://gamma.app/?utm_source=made-with-gamma

Wait but Why? [Throughput]

To measure the impact of number of output tokens, we have to see the metric "inter-token latency" or "time per output
token".

This metric only counts the latency between each token in the decode phase, which means it does not depend on the
number of input tokens.

For Llama-3.1-70b, with 2000 output tokens, ITL was measured by NVIDIA at 30ms.
This means generating each output token takes 30ms.

Generating 2000 output tokens would mean - 2000 x 30 ms = 60 seconds, or 1 minute.

Made with GRMIMA

https://docs.nvidia.com/nim/benchmarking/llm/latest/performance.html
https://gamma.app/?utm_source=made-with-gamma

Output tokens > Input tokens

* Total time taken =~30ms * (Number of Output
tokens) + 0.05ms * (Number of Input Tokens)

* Performance impact of the number of output tokens
overshadows the number of input tokens.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Do performance wins from concurrency last forever?

e Unfortunately, no. As this graph based on data from NVIDIA shows, as concurrency increases, throughput gains plateau.

Concurrency: Throughput Diminishing Returns

=&— Throughput Marginal Gain
400
—-
800 ? ® =
350
700
300
600
) 250
~
x £
© 500 o
= 200 ©
= =
S 400 o
= :
= 160
= 300
100
200
/ 50
100 /
0
(0]
0] 50 100 150 200 250
Concurrency

Made with GRMIMA

https://docs.nvidia.com/nim/benchmarking/llm/latest/performance.html
https://gamma.app/?utm_source=made-with-gamma

Do performance wins from concurrency last forever?

While throughput plateaus out, time to first token gets significantly worse.

The reason for this is

TTFT Degradation w/ Concurrency that the prefill phase
~e~TTET © Good(<6s) Degraded Critical (>90s) — — Inflection Pt of token generation is
typically compute

350000 .
. bound.

300000
High concurrency

250000 means higher
contention on the
compute resources of

the GPU.

200000

TTFT (ms)

150000

On the other hand the
decode phase is
typically memory
bandwidth bound.
Extra compute is

100000

50000

available, and
ik 25 50 100 150 200 250

throughput benefits

Concurrency ¢)
rom It.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Know your LLM model's output tokens/sec

OpenRouter Model Speed Comparison

B Meta M DeepSeek M Groq M Google [OpenAl M xAl M Anthropic

Llama 3.1 70B (Meta)
DeepSeek R1 (DeepSeek)
Groq (via Llama 31 70B) (Groq)
Gemini 2.5 Flash Lite (Google)
Gemini 2.0 Flash (Google)

Gemini 2.5 Pro (Google)

GPT-40 (OpenAl)

Llama 4 Maverick (Meta) -

GPT-5 nano (OpenAl)

Model & Provider

Grok 3 (xAl)
Claude 4 Sonnet (Anthropic)

Claude 3.5 Haiku (Anthropic)

0 500 1000 1500 2000

[Made with GRMIMA]

Throughput (tok/s)

https://gamma.app/?utm_source=made-with-gamma

Jump Through Stages with Microservices

Transitioning to microservices boosts performance via parallelism and asynchronous processing.

Event Queue Architecture

_ Parallel Execution RabbitMQ enables independent
Python Asyncio Concurrent file/network ops, worker processing
Async handling for LLM API calls, reducing 1/O wait
preventing blocks
Benefits Drawbacks
® 6x faster bug fixes ® Higher complexity
e Concurrent job processing ® Increased monitoring
® Decoupled producers and consumers ® Django async ORM limitations

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Bug Processing

Repors (Faralc) i B“%J;’;Tﬁi""g
3 B8 - . 28| B& - = Q
=) 9 28| BE
=\/[@ B8 B8 B8 eaEt '*" J s
Analyze Reproduce Bug Root Cause

S S S q--@ & o

Message Queue Message Queue Message Queue Resolved Bugs (Parallel)

‘ Each service runs independenty and communicates via message quequesj

Modulo's bug processing pipeline allows stages to
operate independently for incoming bugs.

Parse and compress
bug report and
artifacts

Analysis

Reproduce bug and
write test case

Reproduce Bug

Root Cause Identify root cause
Fix Generate fix
Validate Validate fix with

reproduction

[Made with GRMIMA]

https://gamma.app/?utm_source=made-with-gamma

Context Management with MemO

® MemO processes a prompt to extract relevant facts from

7 . . .
(& L previous conversation history.

PyDelhi Talk Demo - Context Ma... i . .
® |tsinternal architecture combines a vector database (for

memory embeddings) and a graph database.

* Similar to RAG, Memo fetches only pertinent facts from

a knowledge base.

* Inthe demo we show how token throughput improves
from 60.51 tok/s to 216.06 tok/s in the full context v/s
MemO case.

Made with GRMIMA

https://www.youtube.com/watch?v=VQOjQ-AkCB4
https://gamma.app/?utm_source=made-with-gamma

Know Your Workload

Understand dependencies, parallelization, and atomicity requirements.

Tokens are the key

Reduce token usage for lower cost and better performance; use cost-effective models for non-
critical tasks.

Embrace Parallelism

Leverage parallel processing for LLM applications.

Use Flexible Architectures

Microservices offer independent scaling, fault isolation, and pipelining.

Expect Failures

5 Implement retries universally to handle unpredictable
behavior.

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

Made with GRMIMA

https://gamma.app/?utm_source=made-with-gamma

